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Abstract
In this paper we study the motion of two particles diffusing on low-dimensional
discrete structures in presence of a hard-core repulsive interaction. We show
that the problem can be mapped in two decoupled problems of single particles
diffusing on different graphs by a transformation we call diffusion graph
transform. This technique is applied to study two specific cases: the narrow
comb and the ladder lattice. We focus on the determination of the long time
probabilities for the contact between particles and their reciprocal crossing.
We also obtain the mean square dispersion of the particles in the case of the
narrow comb lattice. The cases of a sticking potential and of ‘vicious’ particles
are discussed.

PACS numbers: 05.50.+q, 05.40.Fb, 45.50.Tn, 75.40.Gb

1. Introduction

The diffusion of interacting particles has recently become the object of renewed interest due
to the great variety of its applications [1–14]. The first systematic approaches to the problem
were introduced in mathematical literature by Harris [1] and then by Fisher in [2], where the
simultaneous motion of p random walkers was studied and multiple occupation of a single site
was forbidden by the hard-core repulsion. Since then different kinds of interactions have been
considered, such as the so-called ‘n-friendly’ walkers (two of the walkers can move together
for up to n lattice sites) and the ‘vicious’ walkers (walkers kill each other when they meet and
the diffusive process stops) [2, 8, 9].

In general, the case of two diffusing interacting particles can be regarded as the motion of
one particle moving in a randomly evolving environment. This gives rise to highly non-linear
behaviour and implies a strong influence of the underlying geometry on the process. This has
already been evidenced in the above mentioned works, even if only standard d-dimensional
lattices have been considered.
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Interactions play a dramatic role in low-dimensional systems, where multiple collisions
between particles are so frequent that they completely modify the usual random walk behaviour.
Extensive studies have been carried out in the simplest case of one-dimensional lattices where
anomalous behaviour has been evidenced [3]. Now since relevant applications of diffusion
with interactions concern biological systems, complex networks and abstract spaces, which
typically exhibit low dimensionality but non-standard geometry, the usual modelling with
regular lattices is not appropriate. These structures are naturally represented by graphs and
their study requires new mathematical approaches based on graph theory.

In this paper, we focus on the diffusion process of two particles in the presence of a
contact repulsive interaction on low-dimension structures of non-conventionalgeometry called
the ‘narrow comb’ and the ‘ladder’ lattice. These graphs reproduce the geometrical feature
of some simple polymers, such as polymeric liquid crystals and decorated linear networks.
Though keeping the same large scale structure of a linear chain, they allow particle crossing
in spite of the presence of a repulsive interaction.

The problem of two diffusing particles on these graphs is solved, introducing a new
technique we call the diffusion graph transform (DGT) [15]. The original problem can
be decoupled into the motion of two independent random walkers moving on two graphs,
representing the coordinate of the centre of mass and the relative distance between the two
particles respectively. Then the problem can be analytically solved using discrete time random
walk methods on non-translation invariant lattices [16, 17]. Moreover, modifications of the
potential (sticking potential or vicious walkers potential) can be easily taken into account. The
paper is organized as follows. In section 2 we present DGT in the simple case of the regular
one-dimensional chain. In section 3 we study and solve the case of the narrow comb while in
section 4 we consider the ladder graph. Finally, in section 5 we discuss our results.

2. The diffusion graphs

As a first example of the application of the diffusion graph technique, we present the simple
and well-studied case of the linear chain. Let us consider a 1D lattice with two classical
distinguishable particles with coordinates x1 and x2. At t = 0 the particles start from two
adjacent sites x1 = 0 and x2 = 1. At each discrete time step they can jump to one of their
nearest neighbours with the same probability p = 1

2 if these sites are unoccupied. When the
particles are on two adjacent sites, they are forced to move apart and to occupy their only
empty nearest neighbour: these prescriptions model the hard-core repulsive interaction. One
of the main features of the linear chain is that the two particles cannot cross each other and
therefore x1 < x2.

The key step in the diffusion graph technique is the introduction of the coordinate of the
centre of mass

cm = x2 + x1

2
− 1

2
(1)

and the value of the relative distance

dr = x2 − x1

2
− 1

2
(2)

where the additional term − 1
2 defines the initial conditions cm = dr = 0.

At each discrete time step, the value of cm can change to cm + 1 and cm − 1, corresponding
to both particles moving to the right or to the left, or can remain unchanged if particles move in
opposite directions. The probability of these moves can be easily calculated from the original
process rules and they can be shown to be p = 1/4 and p = 1/2, respectively. An analogous
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Figure 1. The diffusion graphs of a linear chain: (a) cm diffusion graph and (b) dr diffusion graph.

derivation can be obtained for the value of dr, leading to the same conclusions, with the only
additional prescription that dr cannot assume negative values. This suggests representing the
values of cm and dr as the positions of two random walkers moving on two new lattices we
shall call the diffusion graphs.

In the case of cm the diffusion graph will be a linear chain with jumping probabilities
p = 1/4 and waiting time probabilities at each site p = 1/2 as represented in figure 1(a).
The diffusion graph of dr, represented in figure 1(b), is a half linear chain with waiting time
probabilities p = 1/2 at every site, except at the origin O, since this point represents the
contact between the particles (dr = 0). Once the diffusion graphs are defined, the original
problem is reduced to the study of a single random walker on the diffusion graphs of cm and
dr, respectively.

In each single walk the time evolutions of cm and dr are correlated in such a way that,
when one of these coordinates changes, the other is left unchanged. However, this very
particular kind of correlation has no influence on the average values since it is completely
taken into account by the waiting time probabilities on each diffusion graphs. The only
residual correlation appears in a modified waiting time probability when the two particles
have a contact, since in that case dr must increase by one unit, with a corresponding waiting
time probability p = 1 for cm instead of the usual p = 1/2. However, it can be proven that this
change in the waiting probability does not affect the leading asymptotic behaviour for t → ∞
[15].

By standard random walk techniques on the diffusion graphs, one obtains the relevant
quantities for two interacting particles in a chain. The probability of a contact between particles
is mapped onto the probability of returning to point O for a random walker on the dr diffusion
graph and follows the asymptotic law: PO(t) ∼ 1

2
√

π
t−1/2 as t → ∞. The coordinate of each

particle and of the centre of mass grows as t1/2 [3]. We can also consider a sticking probability
after a contact simply by introducing a waiting time probability at point O of the dr diffusion
graph. Finally, the problem of ‘vicious particles’, killing each other when occupying nearest
neighbour sites, can be described by considering only the probabilities of reaching O for the
first time on the diffusion graphs.
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a)

b)

Figure 2. (a) Truncated comb lattice, (b) ladder lattice.

3. Two interacting particles on the narrow comb lattice

The possibility of particles crossing is introduced in the linear chain by adding fingers of unit
length at each site. The corresponding geometrical structure is the narrow comb lattice (NCL)
represented in figure 2(a).

Let us consider two particles starting at t = 0 from the adjacent sites x1 = 0 and x2 = 1 on
the backbone of the comb. The particles move on the NCL according to the following rules:

(i) Each particle can jump from site i to one of its nearest neighbours sites with probability
1/zi, zi being the number of nearest neighbours of site i. This means that when a particle
is on one of the fingers, it is forced to jump to the backbone with probability equal to one.

(ii) When the two particles occupy two adjacent sites on the backbone (contact), the particles
are forced to move in one of the following ways:

(a) The two particles jump on the backbone in opposite directions.
(b) Both particles jump onto the fingers corresponding to their positions.
(c) Only one of the particles jumps onto a finger while the other moves on the backbone.

This can be done in four different ways. Two of them lead to what we shall call a
‘tower configuration’, where the particles occupy a site on the backbone and the site
of the corresponding finger.

(iii) The only allowed evolution of a tower configuration consists in the lower particle taking a
further step on the backbone, while the particle on the finger drops down to the backbone.
This means that particles have a probability 1/2 of crossing each other, depending on the
lower particle taking the step to the left or to the right.

Now we can build the diffusion graphs for the centre of mass cm and the relative distance
dr, with cm and dr defined in (1) and (2), where x1 and x2 are the projections on the backbone
of the positions of particles 1 and 2, respectively. When one of the particles is on a finger, cm

and dr have non-integer values and dr has negative values when x1 > x2. The diffusion graphs
of cm and dr are themselves NCLs, decorated with loops and triangles as in figures 3 and 4.
The position of cm on the NCL can be easily deduced from the position of a random walker on
the corresponding diffusion graph: when the random walker occupies a site on the backbone,
his position corresponds to the value of cm; when it stays on a finger, the value of cm is that of
the position of that finger and both particles occupy sites on the fingers of the NCL. Finally,
when the walker is on the upper vertex of one of the triangles, cm has a semi-integer value
corresponding to the projection of the vertex on the backbone. In this situation one of the
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Figure 3. cm diffusion graph and jumping probabilities for the truncated comb lattice.
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Figure 4. dr diffusion graph and jumping probabilities for the truncated comb lattice.

particles is on the backbone and the other on the fingers. Loops are introduced in the diffusion
graph of the NCL to represent waiting time probabilities for cm.

The relative distance graph can be built in a similar way, taking contact into account.
Point O represents the tower configuration which can evolve at point A (contact with x1 < x2)
or at point A′ (contact with x1 > x2) and all the other points are indicated with the value of
their projection on the backbone (1/2, 1, 3/2, 2 . . . and −1/2, −1, −3/2, −2 . . . , depending
on the walker being on the left or the right of the graph with respect to point O).

The diffusion graph with the corresponding jumping probabilities is represented in
figure 4. The jumping probabilities not explicitly indicated are equal to the corresponding
ones of the cm diffusion graph. Since points A and A′ represent contacts between particles, we
can have particle crossing if A → A′ or A′ → A, i.e. crossing can only be the consequence
of a contact. Now we can study the motion of the two interacting particles analysing random
walks on the diffusion graphs.

The first quantity we calculate is the probability of a contact between particles without
crossing. This corresponds to the probability that a single walker starting from point A of the
diffusion graph of dr returns to point A after t steps without ever reaching point A′. We call
this quantity P(A′)(A, A; t) and we define F(A′)(A, A; t) as the probability that a walker starting
from point A returns to this same point for the first time after t steps without ever reaching
point A′. We have:

F (A′)(A,A; t) = 1
3

1
2δt,2 + 1

6δt,2 + 1
9

[
1
6P (A)(1, 1; t − 2) + 1

3P (A)
(

1
2 , 1; t − 2

)
+ 1

2P (A)
(
1, 1

2 , t − 2
)

+ P (A)
(

1
2 , 1

2 ; t − 2
)]

(3)
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where the first term refers to the two steps A → O → A, the second to the probability of
reaching the finger corresponding to point A and then going back to the backbone. P(n)(i, j;
t) is the probability of a t steps walk from point i to point j never reaching point n. Let us
introduce the generating function of a generic P(n)(i, j; t) as:

P̃
(n)

(i, j ; λ) =
∞∑
t=0

P (n)(i, j ; t)λt . (4)

Using the relation P̃
(n)

(i, i; λ) = 1
/[

1 − F̃
(n)

(i, i; λ)
]

[16], the calculation of one of the

P̃
(n)

(i, i; λ) is reduced to that of the corresponding F̃
(n)

(i, i; λ) which is, in general, a much
easier task. In the case of F(A′)(A, A; t) we obtain

F̃
(A′)

(A,A; λ) = λ2

6
+

λ2

6
+

λ2

9

[
1

6
P̃

(A)
(1, 1; λ) +

1

3
P̃

(A)

(
1

2
, 1; λ

)

+
1

2
P̃

(A)

(
1,

1

2
; λ

)
+ P̃

(A)

(
1

2
,

1

2
; λ

)]
. (5)

The generating functions of P̃
(A)

(1, 1; λ) and P̃
(A)

(1/2, 1/2; λ) can in turn be expressed as
functions of the corresponding first time generating functions:

F̃
(A)

(1, 1; λ) = 2

27
λ2 1

1 − λ
3

+ x (6)

F̃
(A)

(
1

2
,

1

2
; λ

)
= 1

3
λ +

2

27
λ2 1

1 − x
(7)

where

x = F̃
(A,1/2)

(1, 1; λ) = λ2

9
+

2

9
λ +

λ2

9

[
1

9
P̃

(1)
(2, 2; λ) +

2

9
P̃

(1)

(
3

2
, 2; λ

)

+
1

3
P̃

(1)

(
2,

3

2
; λ

)
+

2

3
P̃

(1)

(
3

2
,

3

2
; λ

)]
. (8)

Moreover, since P̃
(n)

(i, j ; λ) = F̃
(n)

(i, j ; λ)P̃
(n)

(j, j ; λ) we also have

P̃
(A)

(
1

2
, 1; λ

)
= 1

1 − λ
3

· λ

3
P̃

(A)
(1, 1; λ) (9)

P̃
(A)

(
1,

1

2
; λ

)
= 1

1 − x
· 2λ

9
P̃

(A)

(
1

2
,

1

2
; λ

)
. (10)

Using the translation invariance in the backbone direction of the comb, we get the equalities:
P̃

(1)
(2, 2; λ) = P̃

(A)
(1, 1; λ); P̃

(1)
(3/2, 2; λ) = P̃

(A)
(1/2, 1; λ); P̃

(1)
(2, 3/2; λ) = P̃

(A)
(1,

1/2; λ) and P̃
(1)

(3/2, 3/2; λ) = P̃
(A)

(1/2, 1/2; λ). We obtain from (8) an equation for x:

x = λ2

9
+

2

9
λ +

λ2

9

[
3 + 3λ + 18(1 − x)

9(3 − λ)(1 − x) − 2λ2

]
. (11)

Now we can substitute the value of x and obtain the final expression:

F̃
(A′)

(A,A; λ) = λ2

6
+

λ2

6

(
1 +

3 + 3λ + 18(1 − x)

9(3 − λ)(1 − x) − 2λ2

)
. (12)

The asymptotic behaviour of P(A′)(A, A; t) can be derived from that of the corresponding
generating function considering the limit λ → 1 and then applying Tauberian theorems [16]:

P (A′)(A,A; t) ∼ 12

√
2

π
t−

3
2 t → ∞. (13)
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This asymptotic law shows a dramatic difference with respect to the case of the simple linear
chain where particle crossing is forbidden and the probability of a contact decays as t−1/2.
Note that the deep change in the asymptotic behaviour, originating from the new geometry,
has no analogues if we consider the motion of a single particle, since in this case the linear
chain and the NCL have the same asymptotic diffusion laws.

In a similar way, we can calculate the probability of particles crossing. This is the
probability P(A, A′; t) that a random walker starting from point A of the diffusion graph of dr

reaches point A′ after a t-steps walk. Since

P̃ (A,A′; λ) = F̃ (A,A′; λ)P̃ (A′, A′; λ) (14)

we find after some calculations

P(A,A′; t) ∼ 3

8

√
2

π
t−

1
2 t → ∞. (15)

A key quantity is the average number of contacts without particles crossing. This is given
by the average number of returns to point A after t steps on the dr diffusion graph without
reaching point A′:

M(A′)(A,A; t) ∼ const. (16)

Finally, the mean number of particles crossing follows the asymptotic law

M(A,A′, t) ∼ 3

4

√
2

π
t

1
2 t → ∞. (17)

For a better description of the diffusion properties of the two particles on the NCL, we study
the mean square dispersions �x2

1 and �x2
2 , defined as

�x2
1 = �x2

2 = 〈
x2

1

〉 − 〈x1〉2 = 〈
x2

2

〉 − 〈x2〉2. (18)

In [3] the mean square dispersions of two hard-core interacting particles on a one-dimensional
lattice were studied. In this case, particle crossing was forbidden by the potential and by the
geometry of the system and it was found that

�x2
1 = �x2

2 =
(

1 − 1

π

)
ct (19)

c being the diffusion constant, while for a single particle moving freely on a one-dimensional
lattice we have

�x2
1 = ct. (20)

From the previous results it follows that the interaction inhibits the spreading through the
factor (1− 1/π). In the NCL case, from (1) and (2) it follows that

〈x1〉 = 〈cm − dr〉 (21)

〈x2〉 = 〈cm + dr〉 + 1. (22)

The expressions of 〈cm〉 and 〈dr〉, due to the diffusion graph transform, can be calculated as
the mean displacement 〈d〉 of a single walker moving on the corresponding diffusion graph,
d being the coordinate of the projection of the position of the walker on the backbone of the
diffusion graphs. Using the equation

〈d〉 =
∑∞

−∞ dP(O, d; t)∑∞
−∞ P(O, d; t)

(23)



224 R Burioni et al

and following the steps described in [17] we find 〈cm〉 = 〈dr〉 = 0: this also immediately
follows from the fact that the diffusion graphs of cm and dr are symmetric with respect to point
O so that 〈cm〉 and 〈dr〉 must be zero. Equations (21) and (22) become

〈x1〉 = 〈cm − dr〉 = 0 (24)

〈x2〉 = 〈cm + dr〉 + 1 = 1 (25)

and we also have

�x2
1 = �x2

2 = 〈
c2
m

〉
+

〈
d2

r

〉
. (26)

By straightforward calculations we find〈
c2
m

〉 ∼ 1
4 t t → ∞ (27)〈

d2
r

〉 ∼ 1
4 t t → ∞ (28)

so that

�x2
1 = �x2

2 ∼ 1
2 t t → ∞. (29)

For a single particle diffusing on the NCL, we have

�x2 ∼ 1
2 t t → ∞. (30)

where x is defined as the projection of the particle position on the backbone of the lattice (for
a single walker on a linear chain �x2 ∼ t t → ∞). We can therefore conclude that the
interaction between particles does not modify the spreading as a consequence of the possibility
of particle crossing. This result is confirmed by equations (13) and (15), stating that a contact
with crossing is much more frequent than a contact without crossing.

4. Two interacting particles on ladder lattices

The ladder lattice exhibits new features with respect to the previous cases due to the presence
of loops. The ladder graph is made of two linear chains whose corresponding points are
connected by links as in figure 2(b). The two particles start from the same site and then
move on the ladder with jumping probabilities equal to 1/3. The relative distance is defined as
dr = N/2, N being the chemical distance, i.e. the number of links of the shortest path connecting
the two particles. The dr diffusion graph is represented in figure 5; the value of dr is given
by the projection on the lower chain of the position of a random walker. When the walker is
on the lower chain of the dr diffusion graph, particles on the real ladder lattice are on the same
chain, while when the walker jumps on the upper chain of the dr diffusion graph it means that
particles move on different chains. Point O represents the contact between particles and the
link between A and A′ represents the possibility of particles crossing each other without direct
contact, since it connects points with dr > 0 and dr < 0 without passing through point O. This
is the direct consequence of the presence of loops and it represents a fundamental technical
difference with respect to the previous case.

The solution of the random walk problem on the diffusion graph can be simplified by the
following considerations. As already shown in [18], the diffusion problem on a ladder-like
lattice can be mapped onto that of a linear chain. This follows from the fact that we are
interested only in the walker displacement in the unbounded direction, and not in its position
on the upper or on the lower chain. Then the ladder can be considered as a linear chain where
we define additional staying probabilities corresponding to the steps spent jumping from one
chain to the other. In the present case this simplification can be applied to the two half-linear
chains originating from the central loop. Note that the central loop cannot be reduced to a
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Figure 5. dr diffusion graph and jumping probabilities for the ladder lattice.
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couple of points of the linear chain and must survive our transformation since it breaks the
translational symmetry of the network. This detail is crucial for the calculation of crossing
without contact probability.

The final graph obtained by this analysis is represented in figure 6. It reproduces the
main features of the dr diffusion graph for the probability of particles crossing with or without
contact. From calculations analogous to the previous case we find that the probability of
contact without crossing is

P (A′)(A,O; t) ∼ 36

25

√
2

π
t−

3
2 t → ∞ (31)

and shows the same time dependence as we found in the NCL case. The probability of crossing
without contact is

P (O)(A,A′; t) ∼ 48

25

√
2

π
t−

3
2 t → ∞ (32)

while the generic probability of crossing decays as

P(A,A′; t) ∼ 3√
2π

t−
1
2 t → ∞. (33)

The description of the steps leading to (31), (32) and (33) can be found in appendix.
We observe that the probability of a contact without crossing on the ladder lattice follows

the same law as we found in the NCL case and this is also true for the crossing probability.
On the ladder lattice however, a probability of crossing without contact can be defined.
This particular feature of the ladder lattice can be extremely useful when the two processes
representing contact and crossing are used to represent different physical situations.
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5. Summary and discussion

The diffusing graph transform introduced in this paper is a powerful technique which,
combined with the universality properties of the long time asymptotic behaviour of random
walk return probabilities, provides a new tool for the analysis of interacting diffusing particles
on discrete structures. The technique can be applied to decouple and analytically solve the
problem on tree-like and quasi one-dimensional structures also in presence of loops and
crossing probabilities for the particles. This has been done for the case of two interacting
particles on the narrow comb and on the ladder lattice. Our solution shows that the asymptotic
behaviour of contact probabilities is sensitive to the local geometrical details of the underlying
discrete structure.

Appendix

The explicit calculation of (31), (32) and (33) is based on two properties of the generating
functions [16]. The first states that the generating function of the probability P̃

(k)
(i, j ; λ)

of going from point i to point j (i �= j), without ever touching point k, is related to the
corresponding first time arrival generating function by the relation

P̃
(k)

(i, j ; λ) = F̃
(k)

(i, j ; λ) · P̃
(k)

(j, j ; λ). (A.1)

The second property is the well-known relation between P̃
(k)

(i, i; λ) and F̃
(k)

(i, i; λ) we have
already used in the preceding sections:

P̃
(k)

(i, i; λ) = 1

1 − F̃
(k)

(i, i; λ)
. (A.2)

Let us start from the calculation of P̃
(A′)

(A, 0; λ): from (A.1) it follows that:

P̃
(A′)

(A, 0; λ) = F̃
(A′)

(A, 0; λ) · P̃
(A′)

(0, 0; λ) (A.3)

since

F̃
(A′)

(A, 0; λ) = λ

6
P̃

(0,A′)
(A,A; λ) (A.4)

and

P̃
(A′)

(0, 0; λ) = 1

1 − F̃
(A′)

(0, 0; λ)
= 1

1 − λ2

12 P̃
(O,A′)

(A,A; λ)
(A.5)

so that the calculation of P̃
(A′)

(A, 0; λ) is reduced to that of P̃
(O,A′)

(A,A; λ). To obtain the
expression of P̃

(O,A′)
(A,A; λ) we calculate the corresponding first time arrival generating

function:

F̃
(O,A′)

(A,A; λ) = 5λ

9
+

(
2λ

9

)2

P̃
(A)

(1, 1; λ). (A.6)

From the translational invariance of the lattice, we have that P̃
(A)

(1, 1; λ) = P̃
(O,A′)

(A,A; λ).
Using the preceding relation together with (A.2) we obtain:

P̃
(O,A′)

(A,A; λ)
1 − 5λ

9 −
√

1 + λ2

9 − 10λ
9

8λ2

81

. (A.7)
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In the limit λ → 1 − ε and ε → 0 we have:

P̃
(O,A′)

(A,A; 1 − ε) ∼ 9

2

(
1 − 3

√
ε

2

)
(A.8)

and

P̃
(A′)

(A, 0; 1 − ε) ∼ 6
5 − 72

25

√
2ε. (A.9)

Applying Tauberian theorems we obtain (31). For the determination of P̃
(O)

(A,A′; λ), we

follow the same technique writing this quantity as a function of P̃
(O,A′)

(A,A; λ), taking the
limit λ → 1 − ε(ε → 0) and using Tauberian theorems. In conclusion we have

F̃
(O)

(A,A′; λ) = λ

18
P̃

(O,A′)
(A,A; λ) (A.10)

F̃
(O)

(A′, A′; λ) = 1 − 1

P̃
(O,A′)

(A,A; λ)
+

(
λ

18

)2

P̃
(O,A′)

(A,A; λ) (A.11)

and finally, using (A.2) we have

P̃
(O)

(A,A′; λ) = F̃
(O)

(A,A′; λ) · P̃
(O)

(A′, A′; λ). (A.12)

For P̃ (A,A′; λ) the corresponding steps can be summarized as

P̃ (A,A′; λ) = F̃ (A,A′; λ)P̃ (A′, A′; λ) (A.13)

F̃ (A′, A′; λ) = 1 − 1

P̃
(O,A′)

(A,A; λ)
+

λ2

12 − λ2P̃
(O,A′)

(A,A; λ)

×
(

1

27
P̃

(O,A′)
(A,A; λ) +

λ

9
P̃

(O,A′)
(A,A; λ) + 1

)
(A.14)

F̃ (A,A′; λ) = P̃
(O,A′)

(A,A; λ)

12 − λ2P̃
(O,A′)

(A,A; λ)

(
2λ

3
+ λ2

)
. (A.15)
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